
FreeBSD Release Engineering
Abstract

This article describes the release engineering process of the FreeBSD Project.

This document has not yet been updated to describe the current release
procedures of the FreeBSD Release Engineering team following the transition from
Subversion to Git.

1. Introduction to the FreeBSD Release
Engineering Process
Development of FreeBSD has a very specific workflow. In general, all changes to the FreeBSD base
system are committed to the head/ branch, which reflects the top of the source tree.

After a reasonable testing period, changes can then be merged to the stable/ branches. The default
minimum timeframe before merging to stable/ branches is three (3) days.

Although a general rule to wait a minimum of three days before merging from head/, there are a
few special circumstances where an immediate merge may be necessary, such as a critical security
fix, or a bug fix that directly inhibits the release build process.

After several months, and the number of changes in the stable/ branch have grown significantly, it
is time to release the next version of FreeBSD. These releases have been historically referred to as
"point" releases.

In between releases from the stable/ branches, approximately every two (2) years, a release will be

Table of Contents
1. Introduction to the FreeBSD Release Engineering Process . 1

2. General Information and Preparation . 2

3. Release Engineering Terminology . 5

4. Website Changes During the Release Cycle . 5

5. Release from head/. 7

6. Release from stable/ . 8

7. Building FreeBSD Installation Media . 10

8. Publishing FreeBSD Installation Media to Project Mirrors . 14

9. Wrapping up the Release Cycle. 15

10. Release End-of-Life . 15

1

cut directly from head/. These releases have been historically referred to as "dot-zero" releases.

This article will highlight the workflow and responsibilities of the FreeBSD Release Engineering
Team for both "dot-zero" and "point"' releases.

The following sections of this article describe:

General Information and Preparation

General information and preparation before starting the release cycle.

Website Changes During the Release Cycle

Website Changes During the Release Cycle

Release Engineering Terminology

Terminology and general information, such as the "code slush" and "code freeze", used
throughout this document.

Release from head/

The Release Engineering process for a "dot-zero" release.

Release from stable/

The Release Engineering process for a "point" release.

Building FreeBSD Installation Media

Information related to the specific procedures to build installation medium.

Publishing FreeBSD Installation Media to Project Mirrors

Procedures to publish installation medium.

Wrapping up the Release Cycle

Wrapping up the release cycle.

2. General Information and Preparation
Approximately two months before the start of the release cycle, the FreeBSD Release Engineering
Team decides on a schedule for the release. The schedule includes the various milestone points of
the release cycle, such as freeze dates, branch dates, and build dates. For example:

Milestone Anticipated Date

head/ slush: May 27, 2016

head/ freeze: June 10, 2016

head/ KBI freeze: June 24, 2016

doc/ tree slush [1]: June 24, 2016

Ports quarterly branch [2]: July 1, 2016

stable/12/ branch: July 8, 2016

2

Milestone Anticipated Date

doc/ tree tag [3]: July 8, 2016

BETA1 build starts: July 8, 2016

head/ thaw: July 9, 2016

BETA2 build starts: July 15, 2016

BETA3 build starts [*]: July 22, 2016

releng/12.0/ branch: July 29, 2016

RC1 build starts: July 29, 2016

stable/12/ thaw: July 30, 2016

RC2 build starts: August 5, 2016

Final Ports package builds [4]: August 6, 2016

Ports release tag: August 12, 2016

RC3 build starts [*]: August 12, 2016

RELEASE build starts: August 19, 2016

RELEASE announcement: September 2, 2016

 Items marked with "[*]" are "as needed".

1. The doc/ tree slush is coordinated by the FreeBSD Documentation Engineering Team.

2. The Ports quarterly branch used is determined by when the final RC build is planned. A new
quarterly branch is created on the first day of the quarter, so this metric should be used when
taking the release cycle milestones into account. The quarterly branch is created by the FreeBSD
Ports Management Team.

3. The doc/ tree is tagged by the FreeBSD Documentation Engineering Team.

4. The final Ports package build is done by the FreeBSD Ports Management Team after the final (or
what is expected to be final) RC build.

If the release is being created from an existing stable/ branch, the KBI freeze date
can be excluded, since the KBI is already considered frozen on established stable/
branches.

When writing the release cycle schedule, a number of things need to be taken into consideration, in
particular milestones where the target date depends on predefined milestones upon which there is
a dependency. For example, the Ports Collection release tag originates from the active quarterly
branch at the time of the last RC. This in part defines which quarterly branch is used, when the
release tag can happen, and what revision of the ports tree is used for the final RELEASE build.

After general agreement on the schedule, the FreeBSD Release Engineering Team emails the
schedule to the FreeBSD Developers.

It is somewhat typical that many developers will inform the FreeBSD Release Engineering Team

3

about various works-in-progress. In some cases, an extension for the in-progress work will be
requested, and in other cases, a request for "blanket approval" to a particular subset of the tree will
be made.

When such requests are made, it is important to make sure timelines (even if estimated) are
discussed. For blanket approvals, the length of time for the blanket approval should be made clear.
For example, a FreeBSD developer may request blanket approvals from the start of the code slush
until the start of the RC builds.

To keep track of blanket approvals, the FreeBSD Release Engineering Team uses an
internal repository to keep a running log of such requests, which defines the area
upon which a blanket approval was granted, the author(s), when the blanket
approval expires, and the reason the approval was granted. One example of this is
granting blanket approval to release/doc/ to all FreeBSD Release Engineering Team
members until the final RC to update the release notes and other release-related
documentation.

The FreeBSD Release Engineering Team also uses this repository to track pending
approval requests that are received just prior to starting various builds during the
release cycle, which the Release Engineer specifies the cutoff period with an email
to the FreeBSD developers.

Depending on the underlying set of code in question, and the overall impact the set of code has on
FreeBSD as a whole, such requests may be approved or denied by the FreeBSD Release Engineering
Team.

The same applies to work-in-progress extensions. For example, in-progress work for a new device
driver that is otherwise isolated from the rest of the tree may be granted an extension. A new
scheduler, however, may not be feasible, especially if such dramatic changes do not exist in another
branch.

The schedule is also added to the Project website, in the doc/ repository, in
~/website/content/en/releases/12.0R/schedule.adoc. This file is continuously updated as the release
cycle progresses.

In most cases, the schedule.adoc can be copied from a prior release and updated
accordingly.

In addition to adding schedule.adoc to the website, ~/shared/releases.adoc is also updated to add the
link to the schedule to various subpages, as well as enabling the link to the schedule on the Project
website index page.

The schedule is also linked from ~/website/content/en/releng/_index.adoc.

Approximately one month prior to the scheduled "code slush", the FreeBSD Release Engineering
Team sends a reminder email to the FreeBSD Developers.

4

3. Release Engineering Terminology
This section describes some of the terminology used throughout the rest of this document.

3.1. The Code Slush
Although the code slush is not a hard freeze on the tree, the FreeBSD Release Engineering Team
requests that bugs in the existing code base take priority over new features.

The code slush does not enforce commit approvals to the branch.

3.2. The Code Freeze
The code freeze marks the point in time where all commits to the branch require explicit approval
from the FreeBSD Release Engineering Team.

The FreeBSD Subversion repository contains several hooks to perform sanity checks before any
commit is actually committed to the tree. One of these hooks will evaluate if committing to a
particular branch requires specific approval.

To enforce commit approvals by the FreeBSD Release Engineering Team, the Release Engineer
updates base/svnadmin/conf/approvers, and commits the change back to the repository. Once this is
done, any change to the branch must include an "Approved by:" line in the commit message.

The "Approved by:" line must match the second column in base/svnadmin/conf/approvers,
otherwise the commit will be rejected by the repository hooks.

During the code freeze, FreeBSD committers are urged to follow the Change
Request Guidelines.

3.3. The KBI/KPI Freeze
KBI/KPI stability implies that the caller of a function across two different releases of software that
implement the function results in the same end state. The caller, whether it is a process, thread, or
function, expects the function to operate in a certain way, otherwise the KBI/KPI stability on the
branch is broken.

4. Website Changes During the Release Cycle
This section describes the changes to the website that should occur as the release cycle progresses.

The files specified throughout this section are relative to the head/ branch of the
doc repository in Subversion.

5

https://wiki.freebsd.org/Releng/ChangeRequestGuidelines
https://wiki.freebsd.org/Releng/ChangeRequestGuidelines

4.1. Website Changes Before the Release Cycle Begins
When the release cycle schedule is available, these files need to be updated to enable various
different functionalities on the FreeBSD Project website:

File to Edit What to Change

~/shared/releases.adoc Change beta-upcoming from IGNORE to INCLUDE

~/shared/releases.adoc Change beta-testing from IGNORE to INCLUDE

4.2. Website Changes During BETA or RC
When transitioning from PRERELEASE to BETA, these files need to be updated to enable the "Help Test"
block on the download page. All files are relative to head/ in the doc repository:

File to Edit What to Change

share/releases.adoc Update betarel-vers to BETA1

~/website/data/en/news/news.toml Add an entry announcing the BETA

~/website/static/security/advisory-template.txt Add the new BETA, RC, or final RELEASE to the
template

~/website/static/security/errata-template.txt Add the new BETA, RC, or final RELEASE to the
template

Once the releng/12.0/ branch is created, the various release-related documents need to be generated
and manually added to the doc/ repository.

Within release/doc, invoke to generate errata.html, hardware.html, readme.html, and relnotes.html
pages, which are then added to doc/head/en_US.ISO8859-1/htdocs/releases/X.YR/, where X.Y
represents the major and minor version number of the release.

The fbsd:nokeywords property must be set to on on the newly-added files before the pre-commit
hooks will allow them to be added to the repository.

The relevant release-related documents exist in the doc repository for FreeBSD
12.x and later.

4.3. Ports Changes During BETA, RC, and the Final RELEASE
For each build during the release cycle, the MANIFEST files containing the SHA256 of the various
distribution sets, such as base.txz, kernel.txz, and so on, are added to the misc/freebsd-release-
manifests port. This allows utilities other than , such as ports-mgmt/poudriere, to safely use these
distribution sets by providing a mechanism through which the checksums can be verified.

6

https://cgit.freebsd.org/ports/tree/misc/freebsd-release-manifests/
https://cgit.freebsd.org/ports/tree/misc/freebsd-release-manifests/
https://cgit.freebsd.org/ports/tree/ports-mgmt/poudriere/

5. Release from head/
This section describes the general procedures of the FreeBSD release cycle from the head/ branch.

5.1. FreeBSD “ALPHA” Builds
Starting with the FreeBSD 10.0-RELEASE cycle, the notion of “ALPHA” builds was introduced. Unlike
the BETA and RC builds, ALPHA builds are not included in the FreeBSD Release schedule.

The idea behind ALPHA builds is to provide regular FreeBSD-provided builds before the creation of
the stable/ branch.

FreeBSD ALPHA snapshots should be built approximately once a week.

For the first ALPHA build, the BRANCH value in sys/conf/newvers.sh needs to be changed from CURRENT
to ALPHA1. For subsequent ALPHA builds, increment each ALPHAN value by one.

See Building FreeBSD Installation Media for information on building the ALPHA images.

5.2. Creating the stable/12/ Branch
When creating the stable/ branch, several changes are required in both the new stable/ branch and
the head/ branch. The files listed are relative to the repository root. To create the new stable/12/
branch in Subversion:

% svn cp ^/head stable/12/

Once the stable/12/ branch has been committed, make the following edits:

File to Edit What to Change

stable/12/UPDATING Update the FreeBSD version, and remove the
notice about WITNESS

stable/12/contrib/jemalloc/include/jemalloc/jema
lloc_FreeBSD.h #ifndef MALLOC_PRODUCTION

#define MALLOC_PRODUCTION
#endif

stable/12/lib/clang/llvm.build.mk Uncomment -DNDEBUG

stable/12/sys/*/conf/GENERIC* Remove debugging support

stable/12/sys/*/conf/MINIMAL Remove debugging support

stable/12/release/release.conf.sample Update SRCBRANCH

stable/12/sys/*/conf/GENERIC-NODEBUG Remove these kernel configurations

stable/12/sys/arm/conf/std.arm* Remove debugging options

stable/12/sys/conf/newvers.sh Update the BRANCH value to reflect BETA1

7

File to Edit What to Change

stable/12/share/mk/src.opts.mk Move REPRODUCIBLE_BUILD from
__DEFAULT_NO_OPTIONS to __DEFAULT_YES_OPTIONS

stable/12/share/mk/src.opts.mk Move LLVM_ASSERTIONS from
__DEFAULT_YES_OPTIONS to __DEFAULT_NO_OPTIONS
(FreeBSD 13.x and later only)

stable/12/libexec/rc/rc.conf Set dumpdev from AUTO to NO (it is configurable via
for those that want it enabled by default)

stable/12/release/Makefile Remove the debug.witness.trace entries

Then in the head/ branch, which will now become a new major version:

File to Edit What to Change

head/UPDATING Update the FreeBSD version

head/sys/conf/newvers.sh Update the BRANCH value to reflect CURRENT, and
increment REVISION

head/Makefile.inc1 Update TARGET_TRIPLE and MACHINE_TRIPLE

head/sys/sys/param.h Update __FreeBSD_version

head/gnu/usr.bin/cc/cc_tools/freebsd-native.h Update FBSD_MAJOR and FBSD_CC_VER

head/contrib/gcc/config.gcc Append the freebsdversion.h section

head/lib/clang/llvm.build.mk Update the value of OS_VERSION

head/lib/clang/freebsd_cc_version.h Update FREEBSD_CC_VERSION

head/lib/clang/include/lld/Common/Version.inc Update LLD_REVISION_STRING

head/Makefile.libcompat Update LIB32CPUFLAGS

6. Release from stable/
This section describes the general procedures of the FreeBSD release cycle from an extablished
stable/ branch.

6.1. FreeBSD stable Branch Code Slush
In preparation for the code freeze on a stable branch, several files need to be updated to reflect the
release cycle is officially in progress. These files are all relative to the top-most level of the stable
branch:

File to Edit What to Change

sys/conf/newvers.sh Update the BRANCH value to reflect PRERELEASE

Makefile.inc1 Update TARGET_TRIPLE

lib/clang/llvm.build.mk Update OS_VERSION

8

File to Edit What to Change

Makefile.libcompat Update LIB32CPUFLAGS

6.2. FreeBSD BETA Builds
Following the code slush, the next phase of the release cycle is the code freeze. This is the point at
which all commits to the stable branch require explicit approval from the FreeBSD Release
Engineering Team. This is enforced by pre-commit hooks in the Subversion repository by editing
base/svnadmin/conf/approvers to include a regular expression matching the stable/12/ branch for
the release:

^/stable/12/ re
^/releng/12.0/ re

There are two general exceptions to requiring commit approval during the release
cycle. The first is any change that needs to be committed by the Release Engineer
to proceed with the day-to-day workflow of the release cycle, the other is security
fixes that may occur during the release cycle.

Once the code freeze is in effect, the next build from the branch is labeled BETA1. This is done by
updating the BRANCH value in sys/conf/newvers.sh from PRERELEASE to BETA1.

Once this is done, the first set of BETA builds are started. Subsequent BETA builds do not require
updates to any files other than sys/conf/newvers.sh, incrementing the BETA build number.

6.3. Creating the releng/12.0/ Branch
When the first RC (Release Candidate) build is ready to begin, the releng/ branch is created. This is a
multi-step process that must be done in a specific order, to avoid anomalies such as overlaps with
__FreeBSD_version values, for example. The paths listed below are relative to the repository root.
The order of commits and what to change are:

% svn cp ^/stable/12/ releng/12.0/

File to Edit What to Change

releng/12.0/sys/conf/newvers.sh Change BETAX to RC1

releng/12.0/sys/sys/param.h Update __FreeBSD_version

[.filename]#releng/12.0/sys/conf/kern.opts.mk Move REPRODUCIBLE_BUILD from
DEFAULT_NO_OPTIONS toDEFAULT_YES_OPTIONS

releng/12.0/etc/pkg/FreeBSD.conf Replace latest with quarterly as the default
package repository location

9

File to Edit What to Change

releng/12.0/release/pkg_repos/release-dvd.conf Replace latest with quarterly as the default
package repository location

stable/12/sys/conf/newvers.sh Update BETAX with PRERELEASE

stable/12/sys/sys/param.h Update __FreeBSD_version

svnadmin/conf/approvers Add a new approvers line for the releng branch
as was done for the stable branch

% svn propdel -R svn:mergeinfo releng/12.0/
% svn commit releng/12.0/
% svn commit stable/12/

Now that two new __FreeBSD_version values exist, also update
~/documentation/content/en/books/porters-handbook/versions/chapter.adoc in the Documentation
Project repository.

After the first RC build has completed and tested, the stable/ branch can be "thawed" by removing
(or commenting) the ^/stable/12/ entry in svnadmin/conf/approvers.

Following the availability of the first RC, FreeBSD Bugmeister Team should be emailed to add the
new FreeBSD -RELEASE to the versions available in the drop-down menu shown in the bug tracker.

7. Building FreeBSD Installation Media
This section describes the general procedures producing FreeBSD development snapshots and
releases.

7.1. Release Build Scripts
This section describes the build scripts used by FreeBSD Release Engineering Team to produce
development snapshots and releases.

7.1.1. The release.sh Script

Prior to FreeBSD 9.0-RELEASE, src/release/Makefile was updated to support , and the
src/release/generate-release.sh script was introduced as a wrapper to automate invoking the
targets.

Prior to FreeBSD 9.2-RELEASE, src/release/release.sh was introduced, which heavily based on
src/release/generate-release.sh included support to specify configuration files to override various
options and environment variables. Support for configuration files provided support for cross
building each architecture for a release by specifying a separate configuration file for each
invocation.

As a brief example of using src/release/release.sh to build a single release in /scratch:

10

/bin/sh /usr/src/release/release.sh

As a brief example of using src/release/release.sh to build a single, cross-built release using a
different target directory, create a custom release.conf containing:

release.sh configuration for powerpc/powerpc64
CHROOTDIR="/scratch-powerpc64"
TARGET="powerpc"
TARGET_ARCH="powerpc64"
KERNEL="GENERIC64"

Then invoke src/release/release.sh as:

/bin/sh /usr/src/release/release.sh -c $HOME/release.conf

See and src/release/release.conf.sample for more details and example usage.

7.1.2. The thermite.sh Wrapper Script

To make cross building the full set of architectures supported on a given branch faster, easier, and
reduce human error factors, a wrapper script around src/release/release.sh was written to iterate
through the various combinations of architectures and invoke src/release/release.sh using a
configuration file specific to that architecture.

The wrapper script is called thermite.sh, which is available in the FreeBSD Subversion repository at
svn://svn.freebsd.org/base/user/gjb/thermite/, in addition to configuration files used to build
head/ and stable/12/ development snapshots.

Using thermite.sh is covered in Building FreeBSD Development Snapshots and Building FreeBSD
Releases.

Each architecture and individual kernel have their own configuration file used by release.sh. Each
branch has its own defaults-X.conf configuration which contains entries common throughout each
architecture, where overrides or special variables are set and/or overridden in the per-build files.

The per-build configuration file naming scheme is in the form of ${revision}-${TARGET_ARCH}-
${KERNCONF}-${type}.conf, where the uppercase variables are equivalent to what uses in the build
system, and lowercase variables are set within the configuration files, mapping to the major
version of the respective branch.

Each branch also has its own builds-X.conf configuration, which is used by thermite.sh. The
thermite.sh script iterates through each ${revision}, ${TARGET_ARCH}, ${KERNCONF}, and ${type}
value, creating a master list of what to build. However, a given combination from the list will only
be built if the respective configuration file exists, which is where the naming scheme above is
relevant.

There are two paths of file sourcing:

11

• builds-12.conf - main.conf

This controls thermite.sh behavior

• 12-amd64-GENERIC-snap.conf - defaults-12.conf - main.conf

This controls release/release.sh behavior within the build

The builds-12.conf, defaults-12.conf, and main.conf configuration files exist to
reduce repetition between the various per-build files.

7.2. Building FreeBSD Development Snapshots
The official release build machines have a specific filesystem layout, which using ZFS, thermite.sh
takes heavy advantage of with clones and snapshots, ensuring a pristine build environment.

The build scripts reside in /releng/scripts-snapshot/scripts or /releng/scripts-release/scripts
respectively, to avoid collisions between an RC build from a releng branch versus a STABLE snapshot
from the respective stable branch.

A separate dataset exists for the final build images, /snap/ftp. This directory contains both
snapshots and releases directories. They are only used if the EVERYTHINGISFINE variable is defined in
main.conf.

The EVERYTHINGISFINE variable name was chosen to avoid colliding with a variable
that might be possibly set in the user environment, accidentally enabling the
behavior that depends on it being defined.

As thermite.sh iterates through the master list of combinations and locates the per-build
configuration file, a ZFS dataset is created under /releng, such as /releng/12-amd64-GENERIC-snap.
The src/, ports/, and doc/ trees are checked out to separate ZFS datasets, such as /releng/12-src-
snap, which are then cloned and mounted into the respective build datasets. This is done to avoid
checking out a given tree more than once.

Assuming these filesystem paths, thermite.sh would be invoked as:

cd /releng/scripts-snapshot/scripts
./setrev.sh -b stable/12/
./zfs-cleanup.sh -c ./builds-12.conf
./thermite.sh -c ./builds-12.conf

Once the builds have completed, additional helper scripts are available to generate development
snapshot emails which are sent to the freebsd-snapshots@freebsd.org mailing list:

cd /releng/scripts-snapshot/scripts
./get-checksums.sh -c ./builds-12.conf | ./generate-email.pl > snapshot-12-mail

12

The generated output should be double-checked for correctness, and the email
itself should be PGP signed, in-line.

These helper scripts only apply to development snapshot builds. Announcements
during the release cycle (excluding the final release announcement) are created
from an email template. A sample of the email template currently used can be
found here.

7.3. Building FreeBSD Releases
Similar to building FreeBSD development snapshots, thermite.sh would be invoked the same way.
The difference between development snapshots and release builds, BETA and RC included, is that the
configuration files must be named with release instead of snap as the type, as mentioned above.

In addition, the BUILDTYPE and types must be changed from snap to release in defaults-12.conf and
builds-12.conf, respectively.

When building BETA, RC, and the final RELEASE, also statically set BUILDSVNREV to the revision on the
branch reflecting the name change, BUILDDATE to the date the builds are started in YYYYMMDD format.
If the doc/ and ports/ trees have been tagged, also set PORTBRANCH and DOCBRANCH to the relevant tag
path in the Subversion repository, replacing HEAD with the last changed revision. Also set releasesrc
in builds-12.conf to the relevant branch, such as stable/12/ or releng/12.0/.

During the release cycle, a copy of CHECKSUM.SHA512 and CHECKSUM.SHA256 for each
architecture are stored in the FreeBSD Release Engineering Team internal repository in addition to
being included in the various announcement emails. Each MANIFEST containing the hashes of
base.txz, kernel.txz, etc. are added to misc/freebsd-release-manifests in the Ports Collection, as well.

In preparation for the release build, several files need to be updated:

File to Edit What to Change

sys/conf/newvers.sh Update the BRANCH value to RELEASE

UPDATING Add the anticipated announcement date

lib/csu/common/crtbrand.S Replace __FreeBSD_version with the value in
sys/sys/param.h

After building the final RELEASE, the releng/12.0/ branch is tagged as release/12.0.0/ using the
revision from which the RELEASE was built. Similar to creating the stable/12/ and releng/12.0/
branches, this is done with svn cp. From the repository root:

% svn cp ^/releng/12.0/@r306420 release/12.0.0/
% svn commit release/12.0.0/

13

here
https://cgit.freebsd.org/ports/tree/misc/freebsd-release-manifests/

8. Publishing FreeBSD Installation Media to
Project Mirrors
This section describes the procedure to publish FreeBSD development snapshots and releases to the
Project mirrors.

8.1. Staging FreeBSD Installation Media Images
Staging FreeBSD snapshots and releases is a two part process:

• Creating the directory structure to match the hierarchy on ftp-master

If EVERYTHINGISFINE is defined in the build configuration files, main.conf in the case of the build
scripts referenced above, this happens automatically in the after the build is complete, creating
the directory structure in ${DESTDIR}/R/ftp-stage with a path structure matching what is
expected on ftp-master. This is equivalent to running the following in the directly:

make -C /usr/src/release -f Makefile.mirrors EVERYTHINGISFINE=1 ftp-stage

After each architecture is built, thermite.sh will rsync the ${DESTDIR}/R/ftp-stage from the build
to /snap/ftp/snapshots or /snap/ftp/releases on the build host, respectively.

• Copying the files to a staging directory on ftp-master before moving the files into pub/ to begin
propagation to the Project mirrors

Once all builds have finished, /snap/ftp/snapshots, or /snap/ftp/releases for a release, is polled by
ftp-master using rsync to /archive/tmp/snapshots or /archive/tmp/releases, respectively.

On ftp-master in the FreeBSD Project infrastructure, this step requires root
level access, as this step must be executed as the archive user.

8.2. Publishing FreeBSD Installation Media
Once the images are staged in /archive/tmp/, they are ready to be made public by putting them in
/archive/pub/FreeBSD. To reduce propagation time, is used to create hard links from /archive/tmp to
/archive/pub/FreeBSD.

For this to be effective, both /archive/tmp and /archive/pub must reside on the
same logical filesystem.

There is a caveat, however, where rsync must be used after to correct the symbolic links in
pub/FreeBSD/snapshots/ISO-IMAGES which will replace with a hard link, increasing the
propagation time.

 As with the staging steps, this requires root level access, as this step must be

14

executed as the archive user.

As the archive user:

% cd /archive/tmp/snapshots
% pax -r -w -l . /archive/pub/FreeBSD/snapshots
% /usr/local/bin/rsync -avH /archive/tmp/snapshots/* /archive/pub/FreeBSD/snapshots/

Replace snapshots with releases as appropriate.

9. Wrapping up the Release Cycle
This section describes general post-release tasks.

9.1. Post-Release Errata Notices
As the release cycle approaches conclusion, it is common to have several EN (Errata Notice)
candidates to address issues that were discovered late in the cycle. Following the release, the
FreeBSD Release Engineering Team and the FreeBSD Security Team revisit changes that were not
approved prior to the final release, and depending on the scope of the change in question, may
issue an EN.

 The actual process of issuing ENs is handled by the FreeBSD Security Team.

To request an Errata Notice after a release cycle has completed, a developer should fill out the
Errata Notice template, in particular the Background, Problem Description, Impact, and if applicable,
Workaround sections.

The completed Errata Notice template should be emailed together with either a patch against the
releng/ branch or a list of revisions from the stable/ branch.

For Errata Notice requests immediately following the release, the request should be emailed to both
the FreeBSD Release Engineering Team and the FreeBSD Security Team. Once the releng/ branch
has been handed over to the FreeBSD Security Team as described in Handoff to the FreeBSD
Security Team, Errata Notice requests should be sent to the FreeBSD Security Team.

9.2. Handoff to the FreeBSD Security Team
Roughly two weeks following the release, the Release Engineer updates svnadmin/conf/approvers
changing the approver column from re to (so|security-officer) for the releng/12.0/ branch.

10. Release End-of-Life
This section describes the website-related files to update when a release reaches EoL (End-of-Life).

15

https://www.freebsd.org/security/errata-template.txt

10.1. Website Updates for End-of-Life
When a release reaches End-of-Life, references to that release should be removed and/or updated
on the website:

File What to Change

~/website/themes/beastie/layouts/index.html Remove u-relXXX-announce and u-relXXX-
announce references.

~/website/content/en/releases/_index.adoc Move the u-relXXX-* variables from the
supported release list to the Legacy Releases list.

~/website/content/en/releng/_index.adoc Update the appropriate releng branch to refelect
the branch is no longer supported.

~/website/content/en/security/_index.adoc Remove the branch from the supported branch
list.

~/website/content/en/where.adoc Remove the URLs for the release.

~/website/themes/beastie/layouts/partials/sidena
v.html

Remove u-relXXX-announce and u-relXXX-
announce references.

~/website/static/security/advisory-template.txt Remove references to the release and releng
branch.

~/website/static/security/errata-template.txt Remove references to the release and releng
branch.

16

	FreeBSD Release Engineering
	Table of Contents
	1. Introduction to the FreeBSD Release Engineering Process
	2. General Information and Preparation
	3. Release Engineering Terminology
	4. Website Changes During the Release Cycle
	5. Release from head/
	6. Release from stable/
	7. Building FreeBSD Installation Media
	8. Publishing FreeBSD Installation Media to Project Mirrors
	9. Wrapping up the Release Cycle
	10. Release End-of-Life

